Hermite Spline Interpolation on Patches for a Parallel Solving of the Vlasov-Poisson Equation

نویسندگان

  • Nicolas Crouseilles
  • Eric Sonnendrucker
  • Guillaume Latu
چکیده

This work is devoted to the numerical simulation of the Vlasov equation using a phase space grid. In contrast with Particle In Cell (PIC) methods which are known to be noisy, we propose a semi-Lagrangian type method to discretize the Vlasov equation in the two dimensional phase space. As this kind of method requires a huge computational effort, one has to carry out the simulations on parallel machines. To this purpose, we present a method using patches decomposing the phase domain, each patch being devoted to a processor. Some Hermite boundary conditions allow to reconstruct a good approximation of the global solution. Several numerical results show the accuracy and the good scalability of the method with up to 64 processors. Key-words: Vlasov equation, semi-Lagrangian method, numerical methods, parallelism ∗ INRIA-Lorraine, Projet CALVI † Shared foot note ‡ LSIIT-Strasbourg et INRIA-Lorraine, Projet CALVI § IRMA-Strasbourg et INRIA-Lorraine, Projet CALVI Interpolation par splines locales pour une implémentation parallèle de l’équation de Vlasov-Poisson Résumé : Ce travail concerne la résolution numérique de l’équation de Vlasov en utilisant une grille de l’espace des phases. Contrairement aux méthodes Particle In Cell (PIC) qui sont connues pour être bruitée, nous proposons une méthode basée sur la méthode semi-Lagrangienne pour discrétiser l’équation de Vlasov en deux dimensions de l’espace des phases. Ce type de méthode étant très coûteuse numériquement, on propose d’effectuer les simulations sur des machines parallèles. Pour cela, on présente une méthode de décomposition de domaine, chaque sous-domaine étant dédié à un processeur. Des conditions de type Hermite aux bords permettent alors d’obtenir une bonne approximation de la solution globale. Plusieurs résultats numériques montrent la précision et la bonne scalabilité de la méthode jusqu’à 64 processeurs. Mots-clés : Vlasov equation, semi-Lagrangian method, numerical methods, parallelism Hermite Spline Interpolation on Patches 3

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hermite Spline Interpolation on Patches for Parallelly Solving the Vlasov-Poisson Equation

This work is devoted to the numerical simulation of the Vlasov equation using a phase space grid. In contrast to ParticleIn-Cell (PIC) methods, which are known to be noisy, we propose a semi-Lagrangian-type method to discretize the Vlasov equation in the two-dimensional phase space. As this kind of method requires a huge computational effort, one has to carry out the simulations on parallel mac...

متن کامل

Hermite Spline Interpolation on Patches for a Parallel Implementation of Beam Focusing Problems

In this paper we present a novel interpolation technique for Vlasov simulations of intense space charge dominated beams. This new technique enables to localize the cubic spline interpolation generally performed in semi-Lagrangian Vlasov codes and thus to improve the scalability of the parallel version. This new method is applied to the propagation of a potassium beam in a periodic focusing chan...

متن کامل

A parallel Vlasov solver based on local cubic spline interpolation on patches

A method for computing the numerical solution of Vlasov type equations on massively parallel computers is presented. In contrast with Particle In Cell methods which are known to be noisy, the method is based on a semi-Lagrangian algorithm that approaches the Vlasov equation on a grid of phase space. As this kind of method requires a huge computational effort, the simulations are carried out on ...

متن کامل

A comparison of semi-Lagrangian discontinuous Galerkin and spline based Vlasov solvers in four dimensions

The purpose of the present paper is to compare two semi-Lagrangian methods in the context of the four-dimensional Vlasov–Poisson equation. More specifically, our goal is to compare the performance of the more recently developed semi-Lagrangian discontinuous Galerkin scheme with the de facto standard in Eulerian Vlasov simulation (i.e. using cubic spline interpolation). To that end, we perform s...

متن کامل

SOLVING INTEGRO-DIFFERENTIAL EQUATION BY USING B- SPLINE INTERPOLATION

In this paper a numerical technique based on the B-spline method is presented for the solution of Fredholm integro-differential equations. To illustrate the efficiency of the method some examples are introduced and the results are compared with the exact solution.  

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007